Cases and controversies from the history of science for learning about the nature of science

José-Antonio Acevedo-Díaz and Antonio García-Carmona - 2016

Foundations

- ✓ The history of science (HOS) as a good resource to address nature of science (NOS) issues in science class.
- ✓A set of stories of the cases and controversies is ready to implementation in preservice science teacher training (2600 4300 words).
- ✓ An explicit and reflective instructional approach is promoted.
- ✓A holistic view of NOS: attention is given to both epistemic and non-epistemic aspects of NOS in the analysis of the stories.
- ✓ Class sessions are based on teamwork and whole-class discussions.

Semmelweis and childbed fever

Acevedo, García-Carmona, and Aragón (2016b)

- Q1. What differences do you think exist between observation and inference in scientific research?
- Q2. What do you think are the main features of the Semmelweis' research method?
- Q3. Do you think that Semmelweis was original and creative in his research? Why?
- Q4. Do you think that the Semmelweis' hypothesis became a theory? Why?
- Q5. Do you think that the procedure followed by Semmelweis influenced on the acceptance of his findings? Why?
- Q6. Why do you think the Semmelweis' findings took a lot of time to be accepted?
- Q7. Do you think that the Semmelweis' skills for scientific communication influenced on the acceptance of his findings? Why?
- Q8. Do you think that the Semmelweis' personality affected it? Why?
- Q9. Do you think that political issues influenced it? Why?
- Q10. Which of those factors do you think were most decisive?

Tesla vs Edison: The war of the currents

Acevedo and García-Carmona (2016b)

A controversy in the history of technology to learn about the nature of technology that is different from the nature of science.

- Q1. What individuals, collectives and social actors do you think were involved in the Tesla-Edison controversy? Why?
- Q2. Which characteristics do you think that best define technology?
- Q3. Do you think that technology must be identified with applied science? Give your reasons.
- Q4. What elements do you think characterize the technological knowledge? Why?
- Q5. Do you think patents are important in technology? Why?
- Q6. Two examples of technological values are the technical rationality and the contribution of technology to social welfare. Can you quote and justify other values of technology?

Pasteur vs Liebig: The fermentation

Acevedo-Díaz and García-Carmona (2016c)

- Q1. Why do you think that there might be important differences in scientific interpretations of a natural phenomenon, as in the case of Pasteur and Liebig regarding fermentation?
- Q2. According to what you have read in the text, how would you explain what a scientific theory is?
- Q3. According to what you have read in the text, to what extent do you agree that scientific research develops mainly through successive processes of experimentation and testing?
- Q4. From what you have read about the scientific controversy on fermentation, how important for the development of science do you think the mistakes that scientists make are?
- Q5. According to what you read in the text, what role do you believe scientists' creativity and imagination have in their research?
- Q6. For what reason do you think Pasteur's ideas on fermentation had more success than Liebig's at their time?
- Q7. How do you think the sociocultural, political, economic, etc. contexts of each age can influence the development of science? Explain it for this case of fermentation.
- Q8. What interest do you think there can be for the advancement of science in the existence of disputes or disagreements among scientists about a research problem?

Pasteur vs Pouchet: The spontaneous generation

Acevedo-Díaz, García-Carmona, and Aragón (2016a)

- Q1. What do you think was the role of theoretical beliefs in the interpretation of the observations? Why?
- Q2. What role do you think the experimental designs had on the results obtained? Why?
- Q3. Do you think the controversy was solved with a crucial experiment? Why?
- Q4. Do you think that there was subjectivity in the controversy? Why?
- Q5. Do you think that the procedure of the scientific community to judge the controversy avoided subjectivity? Why?
- Q6. Do you think religion influenced on the controversy? Why?
- Q7. Do you think politics influenced on the controversy? Why?
- Q8. What procedures do you think were employed to communicate the research findings to other colleagues and the public concerned in they?
- Q9. What factors do you think were most influential for solving the controversy? Why?

Rosalind Franklin and the DNA structure

Acevedo and García-Carmona (2016a)

- Q1. It is very common to read that "the scientific method" is a step-by-step process whereby the scientific knowledge is built. Do you agree with it? Give reasons.
- Q2. Do you think that all scientists involved in research about DNA worked towards the same objectives? Give your reasons.
- Q3. What are the main strengths of the Watson and Crick model of DNA in your opinion?
- Q4. Rosalind Franklin was not the first scientist to elucidate the structure of DNA. What epistemic and non-epistemic factors could influence it in your opinion?

Epistemic aspects of NOS addressed (I) Nature of the science processes

- ✓ Observation and inference.
- ✓ Scientific methodologies.
- ✓ Role of hypotheses.
- ✓ Creativity and imagination.
- ✓ Role of experimentation in science.
- ✓ Role of errors in the development of science.
- ✓ Influence of the scientists' beliefs, attitudes and skills.
- ✓ Role of classification schemes.
- ✓ Interest of the scientific controversies for the advancement of science.
- ✓ Research designs and experimental results.
- ✓ Influence of the scientific specialisms of scientists in the planning and development of scientific research.
- ✓ Research question and aims pursued.
- ✓ Models and modelling in science.

Epistemic aspects of NOS addressed (II) Nature of the scientific knowledge

- ✓ Characteristics of a scientific theory.
- ✓ Differences between scientific laws and theories.
- ✓ Differences and relations between science and technology.
- ✓ Differences in scientific interpretation of the same phenomenon.
- ✓ Tentativeness of scientific theories.
- ✓ Dominance of some scientific theories over others.
- ✓ Tentative and dynamic nature of scientific knowledge.

Non-epistemic aspects of NOS addressed (I) Internal factors to the scientific community

- ✓ Role of scientific communication.
- ✓ Professional relationships in the scientific community.
- ✓ Scientists' personality.
- ✓ Personal relationships among the scientists.
- ✓ Role of scientific community in the acceptance of scientific theories.
- ✓ Rhetorical skills and semantic strategies to persuade through own ideas.
- ✓ Scientific cooperation.
- ✓ Scientific competitiveness.
- ✓ Moral and ethical issues.
- ✓ Gender influence.

Non-epistemic aspects of NOS addressed (II) External factors to the scientific community

- ✓ Political influences in science.
- ✓ Role of patents.
- ✓ Historical, social and cultural context.
- ✓ Influence of nationalist patriotism.
- ✓ Political support for scientific research.
- ✓ Economic support for scientific research.
- ✓ Influence of society on science.
- ✓ Influence of science on society.
- ✓ Impact of science on socioeconomic issues.
- ✓ Science and religion.
- ✓ Role of media in science dissemination.

References

Acevedo-Díaz, J. A., & García-Carmona A. (2016a). Rosalind Franklin y la estructura del ADN: un caso de historia de la ciencia para aprender sobre la naturaleza de la ciencia. *Revista Científica*, *27*, 162-175.

Acevedo, J. A., & García-Carmona A. (2016b). Una controversia de la Historia de la Tecnología para aprender sobre Naturaleza de la Tecnología: Tesla *vs.* Edison – La guerra de las corrientes. *Enseñanza de las Ciencias*, *34*(1), 193-209.

Acevedo-Díaz, J. A., & García-Carmona A. (2016c). Uso de la historia de la ciencia para comprender aspectos de la naturaleza de la ciencia. Fundamentación de una propuesta basada en la controversia Pasteur *versus* Liebig sobre la fermentación. *Revista Iberoamericana de Ciencia, Tecnología y Sociedad, 11*(33), 203-226.

Acevedo-Díaz, J. A., García-Carmona, A., & Aragón, M. M. (2016a). La controversia Pasteur vs. Pouchet sobre la generación espontánea: un recurso para la formación inicial del profesorado en la naturaleza de la ciencia desde un enfoque reflexivo. Ciência & Educação, 22(4), 913-933.

Acevedo, J. A., García-Carmona, A., & Aragón, M. M. (2016b). Un caso de Historia de la Ciencia para aprender Naturaleza de la Ciencia: Semmelweis y la fiebre puerperal. *Revista Eureka sobre Enseñanza y Divulgación de las Ciencias*, 13(2), 408-422.